A new SVM approach to speaker identification and verification using probabilistic distance kernels

نویسندگان

  • Pedro J. Moreno
  • Purdy Ho
چکیده

One major SVM weakness has been the use of generic kernel functions to compute distances among data points. Polynomial, linear, and Gaussian are typical examples. They do not take full advantage of the inherent probability distributions of the data. Focusing on audio speaker identification and verification, we propose to explore the use of novel kernel functions that take full advantage of good probabilistic and descriptive models of audio data. We explore the use of generative speaker identification models such as Gaussian Mixture Models and derive a kernel distance based on the Kullback-Leibler (KL) divergence between generative models. In effect our approach combines the best of both generative and discriminative methods. Our results show that these new kernels perform as well as baseline GMM classifiers and outperform generic kernel based SVM’s in both speaker identification and verification on two different audio databases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kullback-Leibler Divergence Based Kernel for SVM Classification in Multimedia Applications

Over the last years significant efforts have been made to develop kernels that can be applied to sequence data such as DNA, text, speech, video and images. The Fisher Kernel and similar variants have been suggested as good ways to combine an underlying generative model in the feature space and discriminant classifiers such as SVM’s. In this paper we suggest an alternative procedure to the Fishe...

متن کامل

Optimization of discriminative kernels in SVM speaker verification

An important aspect of SVM-based speaker verification systems is the design of sequence kernels. These kernels should be able to map variable-length observation sequences to fixed-size supervectors that capture the dynamic characteristics of speech utterances and allow speakers to be easily distinguished. Most existing kernels in SVM speaker verification are obtained by assuming a specific form...

متن کامل

Kernel combination for SVM speaker verification

We present a new approach to construct kernels used on support vector machines for speaker verification. The idea is to learn new kernels by taking linear combination of many kernels such as the Generalized Linear Discriminant Sequence kernels (GLDS) and Gaussian Mixture Models (GMM) supervector kernels. In this new linear kernel combination, the weights are speaker dependent rather than univer...

متن کامل

Characterizing speech utterances for speaker verification with sequence kernel SVM

Support vector machine (SVM) equipped with sequence kernel has been proven to be a powerful technique for speaker verification. A number of sequence kernels have been recently proposed, each being motivated from different perspectives with diverse mathematical derivations. Analytical comparison of kernels becomes difficult. To facilitate such comparisons, we propose a generic structure showing ...

متن کامل

Speaker Identification and Verification Using Support Vector Machines and Sparse Kernel Logistic Regression

In this paper we investigate two discriminative classification approaches for frame-based speaker identification and verification, namely Support Vector Machine (SVM) and Sparse Kernel Logistic Regression (SKLR). SVMs have already shown good results in regression and classification in several fields of pattern recognition as well as in continuous speech recognition. While the non-probabilistic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003